APPENDIX D ## NOTATION | Symbol | Description | |----------------------------|--------------------------------------------------------------------| | C | Unit soil cohesion, ksf; distance from centroid to outer fiber, ft | | $\mathtt{C}_{\mathtt{st}}$ | Distance from centroid of steel reinforcing rod to outer fiber, ft | | c′ | Effective unit soil cohesion, kips per square foot (ksf) | | Ca | Adhesion of soil to base \leq c, ksf | | d_r | Diameter of vane rod, inch | | d_{v} | Vane diameter, inch | | е | Void ratio | | $e_{\mathtt{max}}$ | Reference void ratio of a soil at the minimum density | | $e_{\mathtt{min}}$ | Reference void ratio of a soil at the maximum density | | e _B | Eccentricity parallel with B, $M_{\rm B}/{\rm Q}$, ft | | e _w | Eccentricity parallel with W , M_{W}/Q , ft | | f_n | Negative skin friction, ksf | | f_{ni} | Mobilized negative skin friction of pile element i, ksf | | f_s | Skin friction, ksf | | $f_{\mathtt{si}}$ | Skin friction of pile element i, ksf | | f _c ' | Concrete strength, psi | | f _{ys} | Steel yield strength, psi | | f _s - | Full mobilized skin friction, ksf | | h | Height of hammer fall, ft | | h_v | Vane height, inch | | Symbol | Description | |----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | k | Constant relating elastic soil modulus with depth $\rm E_s=kz,kips/ft^3$ Term preventing unlimited increase in bearing capacity with increasing depth for Hanson method | | k_c | Point correlation factor used in CPT B & G method | | n | Number of piles in a group, number of pile elements | | p_{\circ} | Internal pressure causing lift-off of dilatometer membrane, ksf | | p_1 | Internal pressure required to expand central point of the dilatometer membrane by 1.1 millimeters, ksf | | $p_{\scriptscriptstyle L}$ | Pressuremeter limit pressure, ksf | | q | Bearing pressure on foundation, ksf | | q_1 | Soil pressure per inch of settlement, ksf | | q_{a} | Allowable unit bearing capacity, ksf | | q_b | Unit base resistance, ksf | | q_{bu} | Unit ultimate end bearing resistance, ksf | | d^c | Cone penetration resistance, ksf | | q_{c1} | Average \textbf{q}_{c} over a distance of L+0.7B to L+4B below pile tip, Figure 5-21, ksf | | q_{c2} | Average q_{c} over a distance L to L-8B above pile tip, Figure 5-21, ksf | | q_{cb1} | Average cone penetration resistance from footing base to 0.5B below base, $\ensuremath{\mathtt{ksf}}$ | | q_{cb2} | Average cone penetration resistance from 0.5B to 1.5B below base, ksf | | q_{ci} | Cone penetration resistance of depth increment i, ksf | | \dot{q}_c | Equivalent cone penetration resistance from footing base to 1.5B below base, ksf | | q_d | Design unit bearing pressure, ksf | | q_{load} | Area pressure applied to soil supporting pile, ksf | | q_{na} | Nominal unit allowable bearing capacity, ksf | | Symbol | Description | |-------------------------------------|-------------------------------------------------------------------------------------------------------------------------| | q_r | Resultant applied pressure on foundation soil, R/BW, ksf | | q_u | Ultimate unit bearing capacity, ksf | | $ extbf{q}_{ ext{ua}}$ | Ultimate unit bearing capacity of axially loaded square or round footings with horizontal ground surface and base, kips | | \mathbf{q}_{ut} | Ultimate unit bearing capacity of upper dense sand, ksf | | $q_{a,1}$ | Allowable unit bearing capacity for 1 inch of settlement, ksf | | $q_{u,b}$ | Ultimate unit bearing capacity on a very thick bed of the bottom soft clay layer, ksf | | $q_{u,p}$ | Ultimate unit bearing capacity of plate, ksf | | $\mathbf{d}^{\mathbf{f}}$ | Limiting stress for Meyerhof method $N_{_{\rm I\!P}} tan \varphi^{\prime},$ ksf | | $\mathbf{q}_{\mathrm{u}}^{ \prime}$ | Net ultimate bearing capacity, $~q_{_{\rm u}}$ - $\gamma_{_{D}}\cdotp \text{D},~ksf$ | | \mathtt{r}_{γ} | Reduction factor, 1 - 0.25log(B/6) | | s | Spacing between piles, ft | | u_w | Pore water pressure, ksf | | Ya | Allowable lateral deflection, inch | | Уо | Lateral groundline deflection, inch | | Z | Depth, ft | | А | Cross-section area of drilled shaft or pile, ft^2 | | A_b | Area of tip or base, ft ² | | A_{bp} | Area of base resisting pullout force, ft ² | | A_{e} | Effective area of foundation $B'W'$, ft^2 | | A_{si} | Perimeter area of pile element $% \left({{C_{si}} \cdot \Delta L} \right)$ | | ${\rm A_{st}}$ | Area of steel, inch ² | | В | Least lateral dimension of a foundation or pile diameter, ft | | B_b | Base diameter, ft | | Symbol | Description | |----------------------------|----------------------------------------------------------------------------------------------------------------| | B _{dia} | Diameter of circular footing, ft | | B_p | Diameter or width of the plate, ft | | $B_{\rm r}$ | Horizontal distance beneath center of strip footing to location of outermost rod in reinforced soil, ft | | B_s | Diameter or width of pile or shaft, ft | | В′ | Effective foundation width, B - 2e _B , ft | | $C_{\mathtt{f}}$ | Correction factor for K when $\delta \neq \phi'$ | | C _g | Circumference of pile group, minimum length of line that can enclose pile group, ft | | C_{ua} | Average undrained shear strength of cohesive soil in which the group is placed, ksf | | C_{ub} | Average undrained shear strength of cohesive soil below the tip to a depth $2B_{\rm b}$ below the tip, ksf | | \mathbf{C}_{um} | Mean undrained shear strength along pile length, ksf | | C_{ov} | Overburden pressure adjustment $(\sigma_{\mbox{\tiny o}}/\sigma_{\mbox{\tiny v}}^{\prime})^{\mbox{\tiny 0.5}}$ | | C_s | Circumference of drilled shaft or pile, ft | | $\mathbf{C}_{\mathtt{si}}$ | Circumference of drilled shaft or pile element i, ft | | C_{u} | Undrained cohesion, ksf | | $C_{\text{u,lower}}$ | Undrained shear strength of the soft lower clay, ksf | | $C_{u,upper}$ | Undrained shear strength of the stiff upper clay, ksf | | C_z | Pile Perimeter at depth z, ft | | C_{ER} | Rod energy correction factor | | $C_{\scriptscriptstyle L}$ | Perimeter of the pile tip, ft | | C_{N} | Overburden correction factor | | CPT | Cone penetration test | | D | Depth of the foundation base below ground surface, ft | | Symbol | Description | |----------------------------|-----------------------------------------------------------------------------------------------------------------------------| | D _c | Critical depth where increase in stress from structure is 10 percent of the vertical soil stress beneath the foundation, ft | | D_{e} | Equivalent embedment depth using CPT procedure for estimating bearing capacity, ft | | D_r | Relative density, percent | | D_R | Relative density, fraction | | \mathbf{D}_{GWT} | Depth below ground surface to groundwater, ft | | \mathbf{E}_{g} | Efficiency of pile group | | \mathbf{E}_{h} | Hammer efficiency | | \mathbf{E}_{p} | Young's modulus of pile, ksf (kips/inch2) | | $\mathbf{E}_{\mathbf{s}}$ | Elastic soil modulus, ksf | | $\mathbf{E}_{\mathtt{sl}}$ | Lateral modulus of soil subgrade reaction, ksf | | $\mathbf{F}_{\mathtt{r}}$ | Reduction factor for drilled shaft unit end bearing capacity | | FS | Factor of safety | | G | Specific gravity | | ${\tt G_i}$ | Initial shear modulus, ksf | | $G_{\mathtt{s}}$ | Shear modulus, ksf | | Н | Depth of shear zone beneath base of foundation, ft | | H_b | Vertical distance from the shaft base in a group to the top of the weak layer, ft | | $\mathbf{H}_{\mathbf{r}}$ | Height of vertical reinforcement rods placed in soil supporting a strip foundation, ft | | $\mathrm{H_{t}}$ | Depth below footing base to weak stratum or soft clay, ft | | I _c | Moment of inertia of concrete section, ft4 | | $\mathtt{I}_{\mathtt{p}}$ | Moment of inertia of pile, ft^4 | | I_r | Rigidity index | | Symbol | Description | |------------------------------------------|-------------------------------------------------------------------------------------------------------------------------| | $\overline{\mathtt{I}_{\mathtt{rr}}}$ | Reduced rigidity index | | ${f I}_{ exttt{st}}$ ${f I}_{ exttt{D}}$ | Moment of inertia of steel section, ft^4 Material deposit index of dilatometer test | | K | Lateral earth pressure coefficient | | K_{\circ} | Coefficient of earth pressure at rest | | K_p | Rankine coefficient of passive pressure, $tan^2(45 + \frac{\phi}{2})$ or $\frac{1 + sin\phi}{1 - sin\phi}$ | | K_{ps} | Punching shear coefficient | | K_v | Constant depending on dimensions and shape of the vane, ft^3 | | K_{D} | Horizontal stress index of dilatometer test | | L | Embeded length of deep foundation, ft | | Lc | Critical depth at which increasing pile lengths provide no increase in end bearing resistance for Meyerhof's method, ft | | ${\tt L_c}$ | Critical length between long and short pile, ft | | $\rm L_{cs}$ | Critical length between short and intermediate pile, ft | | $\mathtt{L}_{\mathtt{cl}}$ | Critical length between intermediate and long pile, ft | | $\mathbf{L}_{\mathtt{clay}}$ | Length of pile in clay, ft | | L_n | Length to neutral point n, ft | | $\mathbf{L}_{\mathtt{sand}}$ | Length of pile in sand, ft | | $\rm L_{sh}$ | Horizontal length of shear zone at the foundation depth, ft | | M _a | Applied bending moment on pile butt (top) in clockwise direction, kips-ft | | M_{y} | Ultimate resisting bending moment of entire pile cross-section, kips-ft | | M_{B} | Bending moment parallel with B, kips-ft | | $\mathbf{M}_{\mathtt{W}}$ | Bending moment parallel with W, kips-ft | | N_c | Dimensionless bearing capacity related with cohesion | | Symbol | Description | |-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------| | N_{cp} | Pile dimensionless bearing capacity related with cohesion | | N_k | Cone factor relating undrained cohesion with cone penetration resistance, often varies from 14 to 20 | | N_n | Standard penetration resistance correlated to n percent energy, blows/foot | | N_p | Relationship between shear modulus and undrained cohesion used in pressuremeter test, 1 + $\ln(G_{\rm s}/C_{\rm u})$ | | $N_{\rm q}$ | Dimensionless bearing capacity factor related with surcharge | | N_{qp} | Pile dimensionless bearing capacity factor related with surcharge | | $N_{_{\mathrm{SPT}}}$ | Average blow per foot in the soil produced by a 140 pound hammer falling 30 inches to drive a standard sampler (1.42" I.D., 2.00" O.D.) one foot | | N_{60} | Penetration resistance normalized to an effective energy delivered to the drill rod at 60 percent of theoretical free-fall energy, blows/foot | | N ₇₀ | Penetration resistance normalized to an effective energy delivered to the drill rod at 70 percent of theoretical free-fall energy, blows/foot | | N_{γ} | Dimensionless bearing capacity factor related with soil weight in the failure wedge | | N_{γ_P} | Pile dimensionless bearing capacity factor related with soil weight in the failure wedge | | N_{ϕ} | $\tan^2\left[45 + \frac{\phi}{2}\right]$ | | OCR | Overconsolidation ratio | | P | Pullout load, kips | | PI | Plasticity index, percent | | P_{max} | Maximum tensile force in shaft, kips | | P_{nu} | Pullout skin resistance force, kips | | $P_{\rm nui}$ | Pullout skin resistance for pile element i, kips | | $P_{\rm u}$ | Ultimate pullout resistance, kips | | Symbol | Description | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------| | Q | Vertical load on foundation, kips | | Qa | Allowable bearing capacity force, kips | | Q_b | Base resistance force, kips | | $Q_{\rm bu}$ | Base resistance capacity, kips | | $Q_{\rm bur}$ | Ultimate base resistance of upper portion of underream, kips (pounds) | | Q_{d} | Design bearing force, kips | | Q_{e} | Applied load in elastic range, kips | | Q_s | Soil-shaft side friction resistance, kips | | Q_{su} | Soil-shaft side friction resistance capacity or uplift thrust, kips | | Q_{sub} | Ultimate soil shear resistance of cylinder of diameter $B_{\scriptscriptstyle D}$ and length down to underream, kips (pounds) | | $Q_{\rm sud}$ | Downdrag, kips (pounds) | | $Q_{\mathtt{sui}}$ | Ultimate skin friction resistance of pile element i, ksf | | $Q_{\rm sur}$ | Ultimate skin resistance, kips (pounds) | | Q_{u} | Ultimate bearing capacity force, kips | | Q_{ug} | Ultimate load capacity of pile group, kips | | $Q_{\text{ug,lower}}$ | Bearing capacity of base at top of lower (weak) soil, kips | | $Q_{\text{ug,upper}}$ | Bearing capacity in the upper soil if the softer lower soil were not present, kips | | $Q_{\rm up}$ | Uplift force on foundation, kips | | $Q_{\rm w}$ | Working load, kips (pounds) | | $Q_{\scriptscriptstyle DL}$ | Dead load of structure, kips (pounds) | | R | Resultant load on foundation, $(Q^2 + T^2)^{0.5}$ | | R_{bc} | Scale reduction factor for end bearing capacity in clay | | $R_{\rm bs}$ | Scale reduction factor for end bearing capacity in sand | | Symbol | Description | |----------------------------|-------------------------------------------------------------------------------------------------------------------------| | R _d | Ratio of equivalent embedment depth to footing width, $\mathrm{D_e/B}$ | | R_{e} | Eccentricity adjustment factor | | R_k | Bearing ratio using CPT procedure for estimating bearing capacity | | R_v | Strength reduction factor of vane shear test | | S | Average penetration in inches per blow for the last 5 to 10 blows for drop hammers and 10 to 20 blows for other hammers | | S_r | Spacing between vertical reinforcement rods in soil, ft | | S_s | Shape factor, assume 1.000 | | S_{u} | Depth of scour, ft | | SPT | Standard penetration test | | Т | Horizontal (lateral) load on foundation, kips | | T_a | Allowable lateral load capacity, kips | | T_u | Lateral load capacity, T_{us} + T_{up} , kips | | $T_{\rm ug}$ | Lateral load capacity of pile group, kips | | $T_{\rm ul}$ | Ultimate lateral load capacity of long pile in cohesionless soil, kips | | $T_{\rm up}$ | Lateral load pile capacity, kips | | $T_{\rm us}$ | Lateral load soil capacity, kips | | $\mathtt{T}_{\mathtt{v}}$ | Torque of the vane test, kips-ft | | W | Lateral length of a foundation, ft | | W_p | Pile weight or pile weight including pile cap, driving shoe, capblock and anvil for double-acting steam hammers, kips | | W_r | Weight of striking parts of ram, kips | | $W_{\mathtt{T}}^{ \prime}$ | Total effective weight of soil and foundation resisting uplift, kips | | W′ | Effective lateral length of a foundation, W - $2e_{\scriptscriptstyle W}$ | | Z | Section modulus I_p/c , ft^3 | | Symbol | Description | |----------------------------------|-------------------------------------------------------------------------------------------------------| | Z _a | Depth of the active zone for heave, ft | | Z_c | Concrete section modulus, ft ³ | | $\mathbf{Z}_{\mathtt{st}}$ | Steel section modulus, ft ³ | | $\alpha_{_{\text{a}}}$ | Adhesion factor | | $\alpha_{\mathtt{f}}$ | Dimensionless pile depth-width relationship factor | | β | Angle of ground slope, deg | | $\beta_{\mathtt{f}}$ | Lateral earth pressure and friction angle factor | | γ | Wet unit soil weight, lbs/ft ³ | | γ_{c} | Moist unit weight of weak clay, kips/ft ³ | | γ_{conc} | Density concrete grout, kips/ft3 | | γ_{d} | Dry density, kips/ft ³ | | $\gamma_{\mathtt{p}}$ | Pile density, kips/ft ³ | | $\gamma_{\mathtt{s}}$ | Unit wet weight of sand, $kips/3$ | | $\gamma_{\texttt{sand}}$ | Unit wet weight of the upper dense sand, kips/ft3 | | $\gamma_{\rm w}$ | Unit weight of water, 0.0625 kips/ft ³ | | $\gamma_{\scriptscriptstyle D}$ | Unit wet weight of surcharge soil within depth $ D$, $ kips/ft^3 $ | | $\gamma_{\scriptscriptstyle H}$ | Wet unit weight of subsurface soil, kips/ft3 | | $\gamma_{\text{\tiny HSUB}}$ | Submerged unit weight of subsurface soil, γ_{H} - $\gamma_{\text{w}},~\text{kips/ft}^3$ | | γ′ | Effective wet unit weight of soil, γ - $u_{\mbox{\tiny w}}, \; kips/ft^3$ | | $\gamma_{\mathtt{b}}'$ | Effective wet unit weight of soil beneath base, kips/ft3 | | γ,′ | Effective wet unit weight of clay, kips/ft3 | | $\gamma_{\mathtt{s}}'$ | Effective wet unit weight of sand, kips/ft3 | | $\gamma_{\scriptscriptstyle D}'$ | Effective unit weight of soil from ground surface to foundation depth, $\mbox{kips/ft}^3$ | | Symbol | Description | |----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------| | $\gamma_{\scriptscriptstyle ext{H}}'$ | Effective unit weight beneath base of foundation to depth $ D + H $ below ground surface, kips/ft 3 | | $\gamma_{\tt L}^{\; \prime}$ | Effective wet unit weight of soil along shaft length L , $kips/ft^3$ | | Δ | Differential movement within span length L, ft | | Δ L | Pile increment, ft | | δ | Angle of base tilt, deg | | δ_{a} | Soil-shaft effective friction angle, deg | | ζ_{c} | Dimensionless correction factor related with cohesion accounting for foundation geometry and soil type | | $\zeta_{ ext{cs}}$ | Dimensionless correction factor related with cohesion and shape | | $\zeta_{ ext{ci}}$ | Dimensionless correction factor related with cohesion and inclined loading | | $\zeta_{ m cd}$ | Dimensionless correction factor related with cohesion and foundation depth | | $\zeta_{c\beta}$ | Dimensionless correction factor related with cohesion and ground slope | | $\zeta_{\text{c}\delta}$ | Dimensionless correction factor related with cohesion and base tilt | | $\zeta_{ ext{cp}}$ | As above except for piles | | ζ_{γ} | Dimensionless correction factor related with soil weight in the failure wedge (repeat as above for factors s, i, d, β and $\delta)$ | | $\zeta_{\gamma_{\rm P}}$ | As above except for piles | | $\zeta_{ m q}$ | Dimensionless correction factor related with surcharge (repeat as above for factors s, i, d, β and $\delta)$ | | $\zeta_{ ext{qp}}$ | As above except for piles | | θ | Angle of resultant load with vertical axis, $\cos^{-1}\left[\begin{array}{c} \underline{Q} \\ \overline{R} \end{array}\right]$ | | λ | Lambda correlation factor for skin resistance of Vijayvergiya & Focht method | | ρ | Settlement, inch | | Symbol | Description | |--------------------------------------------|---------------------------------------------------------------------------------------------------| | $\overline{ ho_{ t b}}$ | Base displacement, inch | | ρ_{bu} | Ultimate base displacement, inch | | ρ_{e} | Elastic pile settlement, inch | | $\rho_{\mathtt{i}}$ | Immediate plate settlement, inch | | $\rho_{\rm u}$ | Ultimate pile settlement, inch | | $\rho_{\rm z}$ | Vertical displacement at depth z, ft | | $\sigma_{\rm d}^{\prime}$ | Effective soil or surcharge pressure at foundation depth D, $\gamma_{\text{D}}^{\prime}$, D, ksf | | $\sigma_{ ext{ho}}$ | Total horizontal in situ stress, ksf | | $\sigma_{\rm i}^{\prime}$ | Effective vertical stress in soil in at shaft (pile) element i, ksf | | $\sigma_{\scriptscriptstyle m}'$ | Mean effective vertical stress between the ground surface and pile tip, ksf | | $\sigma_{\rm n}$ | Normal stress on slip path, ksf | | σ_{\circ} | Reference overburden pressure, 2 ksf | | $\sigma_{\mathtt{p}}^{\prime}$ | Maximum past pressure in soil, ksf | | $\sigma_{\rm v}^{\prime}$ | Effective vertical stress, ksf | | $\sigma_{_{ m vc}}$ | Total vertical pressure in soil including pressure from structure loads, ksf | | $\sigma_{\rm vc}^{\prime}$ | Effective total vertical pressure in soil including pressure from structure loads, ksf | | $\sigma_{ ext{vo}}$ | Vertical overburden pressure, ksf | | $\sigma_{\rm vo}^{\prime}$ | Effective vertical overburden pressure, ksf | | $\sigma_{\rm z}'$ | Effective overburden pressure at the center of depth $$ z, 0 < z \leq L, ksf | | $\sigma_{\scriptscriptstyle L}'$ | Effective soil vertical overburden pressure at pile base, $\gamma^\prime \cdot L,\; ksf$ | | $\sigma_{\scriptscriptstyle L/2}^{\prime}$ | Effective stress at half the pile length, ksf | | τ | Shear stress, ksf (psf) | | $ au_{ exttt{max}}$ | Shear stress at failure, ksf (psf) | | Symbol | Description | |----------------------------|---------------------------------------------------------------------------------------------------------| | $\overline{ au_{ ext{s}}}$ | Soil shear strength, ksf | | $ au_{ m u}$ | Field vane undrained shear strength, ksf | | $v_{\tt s}$ | Poisson's ratio for soil | | ф | Angle of internal friction of soil, deg | | $\phi_{\tt sand}$ | Angle of internal friction of upper dense sand, deg | | φ′ | Effective angle of internal friction of soil, deg | | φ _a | Friction angle between foundation base and soil, deg | | $\phi_{ t g}$ | Friction angle of granular material, deg | | Ψ | Angle of shear zone failure with respect to foundation base, Figure 1-3, 45 + $\varphi^{\prime}/2,$ deg | | ω | Angle of pile taper from vertical, deg |